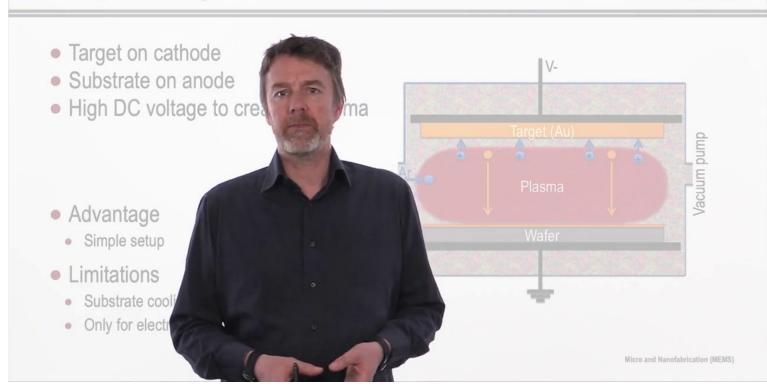


Aperçu une erreur ? Envoyez-nous votre commentaire ! Spotted an error? Send us your comment! https://forms.gle/hYPC8Auh6a4q52qT7

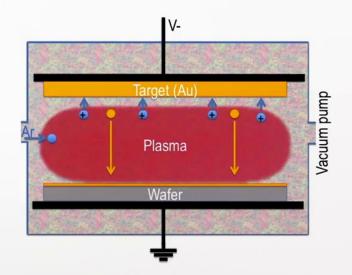
PVD 4: Sputtering


- Physical principle
 - Plasma, spatial zones, Paschen law
- Sputter variations
 - DC sputtering
 - RF sputtering
 - Magnetron sputtering
- lons-target interactions
- Sputter examples
- Other PVD methods
- Film growth and control parameters

Micro and Nanofabrication (MEMS)

Now, we'll have a closer look how in a clean room the various sputter equipment are working. I will show DC, RF, and Magnetron sputtering.

DC sputtering



DC sputtering is one configuration of a sputtering system shown here on the right of the slide. As in every sputtering systems, the material target is placed on the cathode while the substrate is placed on the anode. To create a plasma, a high DC voltage in the order of 1kV or more, is applied between the electrodes. This is why we call the system "DC sputtering".

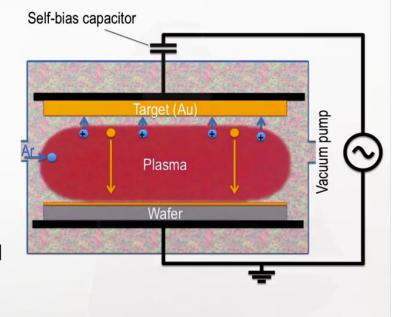
DC sputtering

- Target on cathode
- Substrate on anode
- High DC voltage to create a plasma
- Advantage
 - Simple setup
- Limitations
 - Substrate cooling is required
 - Only for electrically-conductive materials

Micro and Nanofabrication (MEMS)

Usually the anode is grounded and the negative voltage is applied to the cathode. Atoms that are ejected from the target under the bombardment of positive ions condense on the wafer thereby forming the desired thin film, like shown here. The main advantage of this system is it's relative simplicity. However, it suffers from two main limitations. Firstly, the plasma is present in the entire area between the electrodes which has the consequence that this space is filled with electrons which are repulsed by the negative cathode and collide on the substrate. As a result, the substrate substantially heats up and efficient substrate cooling is required. Secondly, it is possible to deposit only electrically conductive materials with DC sputtering. Indeed, if an electrically insulating target is used it will charge within a few milliseconds due to the accumulation of positive Argon ions on the target. As a result, the plasma would stop.

- Target on cathode
- Substrate on anode
- RF voltage to create a plasma
- Capacitance for self-DC bias
- RF sputtering conditions:
 - 1. Avoid target charging: f > 50 [kHz]
 - Energetic ions sputtering the target: f > 5 [MHz]
 cathode capacitive coupling
 - 3. Sputtering on cathode only: anode larger than cathode


RF sputtering main difference with DC sputtering is the way how the plasma is created. As in the case of DC sputtering, the target is placed on the cathode to attract the positive ions and the substrate is placed on the anode. The difference is that, here the plasma is created applying a high frequency RF voltage between the electrodes. As you will see in details, using AC voltage instead of DC voltage has the main advantage to avoid target charging and thus allows the position of electrically insulating materials such a dielectrics.

- Target on cathode
- Substrate on anode
- RF voltage to create a plasma
- Capacitance for self-DC bias

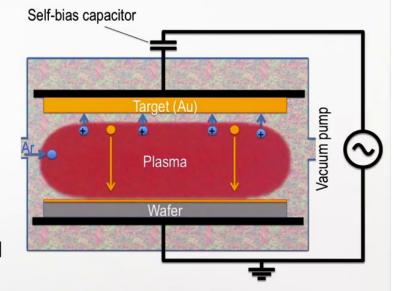
RF sputtering conditions:

- 1. Avoid target charging: f > 50 [kHz]
- Energetic ions sputtering the target: f > 5 [MHz]
 & cathode capacitive coupling
- Sputtering on cathode only: anode larger than cathode

Micro and Nanofabrication (MEMS)

The key element to add to a system using an AC voltage is a self-bias capacitor, shown here. To enable RF sputtering, the following three conditions are required. First, avoid target charging as the cathode where the target is placed will alternate between positive and negative voltages. Both ions and electrons will accumulate on the target resulting in a null overall charge of the target. However, if the frequency is too low accumulation of ions during one single negative period of the signal can be sufficient to charge the target if it's electrically insulating, and to terminate the plasma. Using frequencies higher than 50kHz allows overcoming this throwback as charging time becomes shorter than a millisecond, which is too short to charge the target.

- Target on cathode
- Substrate on anode
- RF voltage to create a plasma
- Capacitance for self-DC bias
- RF sputtering conditions:
 - 1. Avoid target charging: f > 50 [kHz]
 - Energetic ions sputtering the target: f > 5 [MHz]& cathode capacitive coupling
 - 3. Sputtering on cathode only: anode larger than cathode


Second, it is required to have energetic ions colliding on the target. If you simply use the AC voltage to accelerate ions the energy they will gain during on cycle is too low to eject atoms from the target.

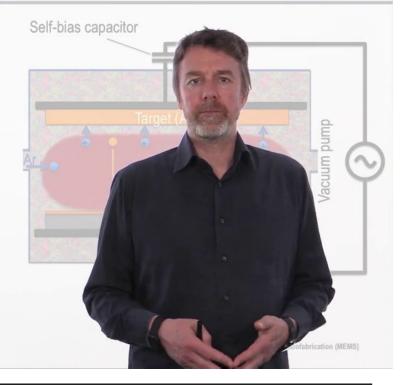
- Target on cathode
- Substrate on anode
- RF voltage to create a plasma
- Capacitance for self-DC bias

RF sputtering conditions:

- 1. Avoid target charging: f > 50 [kHz]
- Energetic ions sputtering the target: f > 5 [MHz]
 & cathode capacitive coupling
- Sputtering on cathode only: anode larger than cathode

Micro and Nanofabrication (MEMS)

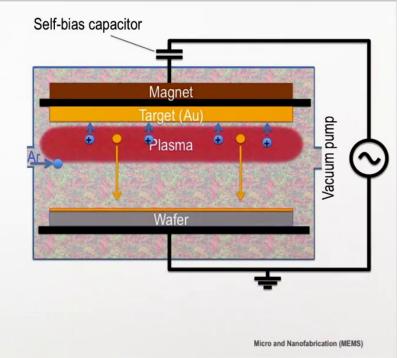
A solution to overcome this effect is to use frequencies larger than 5MHz typically, 30.56MHz, and the capacitor at the cathode for DC self-bias. At such high frequencies, ions cannot follow the RF field anymore, due to their mass. On the other hand, electrons are lighter and can follow the RF field. They will then alternatively strike the cathode and the anode. However, because of the capacitor at the cathode they will accumulate there, and the cathode will progressively be negatively biased. This negative DC voltage will then accelerate positive ions from the plasma, and enable the sputtering process. The third condition is to avoid sputtering of other surfaces than the target. For example, avoid having ions colliding somewhere else than on the target. To do so, the anode must be larger than the cathode. This result is studied in more details in the chapter about dry etching given by my colleague, professor Martin Gijs. The reason behind is that having a smaller cathode allows having a larger potential drop and thus more bombardment, because of current conservation. In a typical RF sputter system, the anode and the entire chamber are therefor grounded to satisfy this condition.


- Target on cathode
- Substrate on anode
- RF voltage to create a plasma
- Capacitance for self-DC bias

Advantages

- Dielectric deposition
- Higher deposition rate than DC sputtering
- Lower power consumption than DC sputtering

Limitations


- · Target cooling is required
- Substrate cooling is required

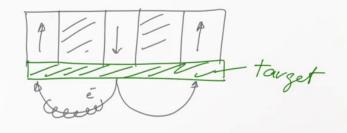
The main advantage of RF sputtering over DC sputtering is it's ability to overcome charging problems and thus to deposit electrically insulating materials, such as dielectrics. In addition, electrons oscillating in the RF field couple the energy more efficiently to the plasma, as a result, compared to DC sputtering, higher deposition rates are achieved and lower power consumption is required in the RF sputtering. However, there's one main drawback leading to the deposition of the electrically insulating materials. These materials are often poor heat conductors which requires very efficient cooling of the target during the sputtering. In addition, as for the DC sputtering, the plasma is not localized and many electrons hit the substrate and heat it up thus substrate cooling is also required.

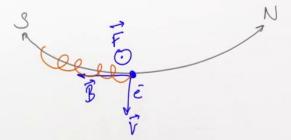
- Target on cathode
- Substrate on anode
- RF voltage to create a plasma
- Capacitance for self-DC bias
- Magnet to confine the plasma

To even further increase the plasma efficiency and thus the deposition rate magnetron sputtering systems are introduced. The added feature compared to the RF system is the magnet placed behind the cathode, shown here which creates a magnetic field, who's goal is to confine electrons so they stay close to the cathode, and induce a

lot of collisions with argon atoms to ionize them and contribute to the sputter process.

- Target on cathode
- Substrate on anode
- RF voltage to create a plasma
- Capacitance for self-DC bias
- Magnet to confine the plasma




F = force in [N]

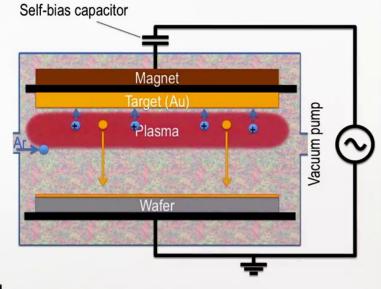
q = elementary charge in [C]

v = particle speed in [m/s]

B = magnetic field in [T]

Micro and Nanofabrication (MEMS)

Let's have a closer look how this works and what it brings. So, let's assume that we have here our target material that we want to sputter any metal or dielectric so we mount our target on a setup that includes a magnet so, here we have a magnet, which has magnetic field lines showing like this and that means we have here to close the magnetic field here, magnetic field, that are going into the plasma and here we have an electron in this area it will spiral and follow the field line as schematically show here. So why is that? You all know that we have here the south and north pole of the magnet and we have here, an electron that has a certain velocity V and within the magnetic field B, that we have then a force that is orthogonal to the two vectors of the velocity and the magnetic field so that, this electron has no other choice than spiraling around the magnetic field line, and follow it, basically.


Advantages

- Lower voltages
- Lower pressure = higher purity
- Higher deposition rate
- Less substrate heating

Limitations

- Complex system
- Non uniform wear of the target

Magnetron with RF and DC sputtering

Micro and Nanofabrication (MEMS)

Due to Lorentz forces, electrons follow a helical trajectory while ion trajectory is not influenced because of their higher mass. So, having a magnet behind the target allows to confine electrons close to the target. This improves ionization efficiency, because of the larger amount of collisions between Argon atoms and electrons. As a result, it is possible to use lower voltages and lower pressure, which allows deposition of film with higher purity. In addition, the plasma is localized. This enables higher deposition rates because of the larger amount of ions impacting the target, and also decreases substrate heating, as less electrons collide on the wafer. On the other hand, the system becomes more complex and the wear of the target is non-uniform.

Target after short usage ~ 254 x 127 mm

Extensively used target

Micro and Nanofabrication (MEMS)

Here on these two photographs you can see two targets of a magnetron sputtering tool. The left image shows the target after some short term usage where we can start seeing how the material is being eroded. On the right photo, we see a similar target after extensive use where a lot of the material has actually been removed. The pattern here shows the ion distribution as a function of the magnetic field provided in the magnetron sputtering tool.

PVD 4: Sputtering

- Physical principle
 - Plasma, spatial zones, Paschen law
- Sputter variations
 - DC sputtering
 - RF sputtering
 - Magnetron sputtering
- lons-target interactions
- Sputter examples
- Other PVD methods
- Film growth and control parameters

Micro and Nanofabrication (MEMS)

So now we have seen how DC, RF and magnetron sputtering are working. Let's have a closer look how actually the ions are interacting with the target material to be able to remove material and deposit it on the substrate.